The weak drop property on closed convex sets

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On drop property for convex sets

Let (X, ‖ · ‖) be a real Banach space. Let C be a closed convex set in X. By a drop D(x, C) determined by a point x ∈ X, x / ∈ C, we shall mean the convex hull of the set {x} ∪ C. We say that C has the drop property if C 6= X and if for every nonvoid closed set A disjoint with C, there exists a point a ∈ A such that D(a, C) ∩ A = {a}. For a given C a sequence {xn} in X will be called a stream i...

متن کامل

Connectedness of Solution Sets for Weak Vector Variational Inequalities on Unbounded Closed Convex Sets

and Applied Analysis 3 (ii) The scalar C-pseudomonotonicity in Definition 2 is weaker than C-pseudomonotonicity in Definition 1(ii). In fact, for any ξ ∈ C∗ \ {0}, x, y ∈ X, if ⟨ξ(u∗), y − x⟩ ≥ 0, then we have ⟨u∗, y − x⟩ ∉ − intC. Then, it follows from the Cpseudomonotonicity of T that ⟨V∗, y − x⟩ ∈ C, which implies that ⟨ξ(V∗), y − x⟩ ≥ 0. Definition 5. The topological space E is said to be c...

متن کامل

On a Covering Property of Convex Sets

Let [Kx, K2, ■ ■ ■ } be a class of compact convex subsets of euclidean M-space with the property that the set of their diameters is bounded. It is shown that the sets A, can be rearranged by the application of rigid motions so as to cover the total space if and only if the sum of the volumes of all the sets A, is infinite. Also, some statements regarding the densities of such coverings are prov...

متن کامل

On Convergence of Closed Convex Sets

In this paper we introduce a convergence concept for closed convex subsets of a finite dimensional normed vector space. This convergence is called C-convergence. It is defined by appropriate notions of upper and lower limits. We compare this convergence with the well-known Painlevé–Kuratowski convergence and with scalar convergence. In fact, we show that a sequence (An)n∈N C-converges to A if a...

متن کامل

Functionally closed sets and functionally convex sets in real Banach spaces

‎Let $X$ be a real normed  space, then  $C(subseteq X)$  is  functionally  convex  (briefly, $F$-convex), if  $T(C)subseteq Bbb R $ is  convex for all bounded linear transformations $Tin B(X,R)$; and $K(subseteq X)$  is  functionally   closed (briefly, $F$-closed), if  $T(K)subseteq Bbb R $ is  closed  for all bounded linear transformations $Tin B(X,R)$. We improve the    Krein-Milman theorem  ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of the Australian Mathematical Society. Series A. Pure Mathematics and Statistics

سال: 1994

ISSN: 0263-6115

DOI: 10.1017/s1446788700034765