The weak drop property on closed convex sets
نویسندگان
چکیده
منابع مشابه
On drop property for convex sets
Let (X, ‖ · ‖) be a real Banach space. Let C be a closed convex set in X. By a drop D(x, C) determined by a point x ∈ X, x / ∈ C, we shall mean the convex hull of the set {x} ∪ C. We say that C has the drop property if C 6= X and if for every nonvoid closed set A disjoint with C, there exists a point a ∈ A such that D(a, C) ∩ A = {a}. For a given C a sequence {xn} in X will be called a stream i...
متن کاملConnectedness of Solution Sets for Weak Vector Variational Inequalities on Unbounded Closed Convex Sets
and Applied Analysis 3 (ii) The scalar C-pseudomonotonicity in Definition 2 is weaker than C-pseudomonotonicity in Definition 1(ii). In fact, for any ξ ∈ C∗ \ {0}, x, y ∈ X, if ⟨ξ(u∗), y − x⟩ ≥ 0, then we have ⟨u∗, y − x⟩ ∉ − intC. Then, it follows from the Cpseudomonotonicity of T that ⟨V∗, y − x⟩ ∈ C, which implies that ⟨ξ(V∗), y − x⟩ ≥ 0. Definition 5. The topological space E is said to be c...
متن کاملOn a Covering Property of Convex Sets
Let [Kx, K2, ■ ■ ■ } be a class of compact convex subsets of euclidean M-space with the property that the set of their diameters is bounded. It is shown that the sets A, can be rearranged by the application of rigid motions so as to cover the total space if and only if the sum of the volumes of all the sets A, is infinite. Also, some statements regarding the densities of such coverings are prov...
متن کاملOn Convergence of Closed Convex Sets
In this paper we introduce a convergence concept for closed convex subsets of a finite dimensional normed vector space. This convergence is called C-convergence. It is defined by appropriate notions of upper and lower limits. We compare this convergence with the well-known Painlevé–Kuratowski convergence and with scalar convergence. In fact, we show that a sequence (An)n∈N C-converges to A if a...
متن کاملFunctionally closed sets and functionally convex sets in real Banach spaces
Let $X$ be a real normed space, then $C(subseteq X)$ is functionally convex (briefly, $F$-convex), if $T(C)subseteq Bbb R $ is convex for all bounded linear transformations $Tin B(X,R)$; and $K(subseteq X)$ is functionally closed (briefly, $F$-closed), if $T(K)subseteq Bbb R $ is closed for all bounded linear transformations $Tin B(X,R)$. We improve the Krein-Milman theorem ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of the Australian Mathematical Society. Series A. Pure Mathematics and Statistics
سال: 1994
ISSN: 0263-6115
DOI: 10.1017/s1446788700034765